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Chapter 1 

Introduction 

1.1     The Cognitive Challenge 

As long as human beings have existed on earth, we have always attempted to decode or 

understand our brains. Our brain is more advanced than any other species which gives 

us capabilities to communicate and learn. The skill of communication also gives us 

the freedom to learn from others' experiences. Research in human cognition, formerly 

limited to the fields neuroscience, cognitive science, philosophy and psychology, has 

recently been extended to artificial intelligence where scientists attempt to recreate 

what is not known yet to our species. 

In adults, almost 1 million motor neurons control our muscles[26], enabling an 

enormous range of complex activities. The primary motor cortex is known to be 

active when the body movements are detected. As shown in the somatotopic maps in 

Figure 1-1, disproportionally large sections of the motor cortex and the somatosensory 

cortex are responsible for representing the fingers and the hand. This results in our 

capability for intricate movements and precise sensing with our fingers. 

However, babies are born with only reflexive capabilities for manipulative move- 

ments. A reflex is an involuntary, stereotyped response to a sensory input. For 

example, babies curl their fingers when the palm is stimulated.  This capability, in 

15 



16 CHAPTER 1.   INTRODUCTION 
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Figure 1-1: Human somatotopic mappings: left, motor cortex; right, somatosensory 

cortex. 

conjunction with babies' curiosity and visual feedback is the bases from which they 

learn to manipulate objects and results in the eventual large portion of cortex map- 

ping. Unfortunately it is still unclear why and how these connections develop in our 

brain. In neural and computer science, many learning strategies are developed based 

on our learning properties. However, they are full of assumptions and definitions that 

are not necessarily valid in the real world, such as Markov chain condition. As one 

of the steps, our approach to this complex phenomena is to reconstruct our behav- 

ior and study the learning process using our faster than ever calculation power of 

computers,in order to provide insight into the human's brain functionalities. 

1.2     The Physical Challenge 

Sensory information is first detected by the receptors which is routed and processed 

within the nervous system to interacts with the brain. Mechanoreceptors, receptors 

that respond to physical deformation, are responsible for touch and pain. The ridges 
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on the fingers orient cutaneous mechanoreceptors called Meissner corpuscles, and they 

are largely responsible for our ability to perform fine tactile discriminations with our 

fingertips. The receptors monitor the environment and transduce the information 

which is then propagated and passed toward the spinal cord. The spinal cord, being 

only about 42 cm long x 1 cm diameter, receives all the motor and sensory inputs, 

which are fed into multiple ascending sensory pathways and local reflex circuits. Un- 

fortunately, the current connector and wire technology does not allow us to build 

such a system due to the size and inorganic material limitations. Even when only one 

hundred 30 gauge stranded wires are run through a small joint and repetitive strain 

is applied, the wires are prone to breakage due to the inflexibility characteristics of 

conductive materials. 

The human body is adaptable to situations and tasks which can be learned through 

training using the same physical body parts. To date, most mechanical hands and 

grippers constructed are task driven and limited to performing a very few specific 

tasks. They may excel in their precision and strength for a particular task, but their 

inflexibility to perform non-specified tasks make the existing hands nonhuman. The 

human hand is an amazing device, capable of manipulating diverse objects and tasks, 

yet its precision and srength requires more external muscular assistance, feedback, and 

training than we imagine. The challenge is to build a system that is not preconfigured, 

but is able to learn to accomplish many tasks like our hands. 

1.3     Terminology 

Many parts of hands and fingers and discussed through out this thesis. For a sim- 

plicity, the terminolgies are based on the human anatomy terminologies shown in 

Figure 1-2 [24]. 

The mechanical hand constructed for this thesis have three fingers, each having 

two segments and two joints, and a thumb with one segment and a joint, so the terms 



18 CHAPTER 1.   INTRODUCTION 

Saddle-joint 
of the thumb 

Figure 1-2: Human anatomy terminology. 

are altered as shown in Table 1.1. 

1.4     Organization of Thesis 

This thesis is organized into 4 additional chapters as follows: 

Chapter 2 discusses the motivation for embodiment in this project. It introduces 

the behavior of humans and related research previously done which leads to the cur- 

rent humanoid research. It also argues the importance and difficulties of embodiment. 

Embodiment is one of the best approaches in order to learn about human cognition, 

but due to mechanical dufficulties, many constraints are considered. 

Chapter 3 presents a detailed description of the hand built for this research. It 

covers the mechanical design and implementation including the structure of physical 

hand, tendon cabling strategy, actuators, sensors and computing tools. 
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Area Part Terminology 
fingers 2nd digit index finger 

3rd digit middle finger 
4th digit ring finger 
segment further away from palm Distal 
segment closer to palm Proximal 
joint further away from palm distal joint 
joint closer to palm proximal joint 

thumb segment Proximal 
joint proximal joint 

palm inside palm 
outside dorsuin 

all segments phalanges 
joints joints 

Table 1.1: Terminologies of mechanical hand parts used. 

Chapter 4 has two parts. The first part describes the PID controller which is used 

locally to incorporate the primitive motion of the hand. The second part presents 

the learning strategies which is inspired by an infant's learning process. Strategies 

such as competitive learning, back-propagation algorithm and reinforcement learning 

are introduced and implemented. The experimental results are also shown in this 

chapter. 

Chapter 5 reviews the research discussed in this thesis and concludes with a dis- 

cussion of the future work. 
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Chapter 2 

Embodiment 

This chapter presents the motivation for embodiment and illustrates its significance 

to this thesis. Humans' cognitive and physical behavior is discussed, with focus on 

infants' manipulation behavior. The hand built is a self-contained human scaled non- 

task driven tool learning its own cognitive and physical behavior, differentiating this 

research from previous work in manipulation tools. The advantages and disadvantages 

associated with building such a system are considered. 

2.1     Motivation and Related Work 

2.1.1     Infants 

Piaget was one of the first of the modern psychologists to recognize the infant's 

manipulative exploratory behavior with the environment as a vehicle of cognitive 

stimulation[22]. Infancy is not only a time when muscles and the nervous system ma- 

ture, but also a time of active and continuous learning which allows a baby to establish 

effective transactions with the environment and move toward a greater degree of au- 

tonomy. During this time, infants practice and perfect sensorimotor patterns that 

become behavioral modules which will be seriated and imbedded in more complex 

actions. 

21 



22 CHAPTER 2.   EMBODIMENT 

Human motor control is a sequential process which is affected by the order of 

development of different regions of the brain and the nervous system. Since the control 

of the central body areas matures before the outer areas, hand development comes 

later than for other parts of the body. Consequently arm motion controlled by a more 

mature shoulder joint causes accidental collisions with objects in the environment as 

the infants come in contact with an increasing number and variety of objects. Reflex is 

the only hand motor control present at birth. When the skin of the palm is touched 

by an object, the muscles of the hand contract and results in curling the fingers, 

whereas if a strong force is applied, the fingers open to alleviate pain by expanding 

the muscles. The reflex is completely controlled and pre-programmed at the spinal 

cord and the summary of the reaction reaches the brain long after the action has been 

taken. When this process repeats itself, the nervous system makes the connection 

between the stimulus and its corresponding actions, resulting in the first step of 

manipulation learning. Through touching the objects, babies learn their shapes, 

dimensions, slopes, edges, and textures. They also finger, grasp, push, and pull to 

learn the material variables of heaviness, mass and rigidity, as well as the changes 

in visual and auditory stimuli that objects provide. Visual feedback is a crucial 

piece in manipulation learning as seen in the infants of a few days old extending their 

hands toward a visible object[28]. This instinctive motivating information is triggered 

somewhere in the nervous system and allows explorative learning to initiate. 

2.1.2     Mechanical Hand 

Since the eighteenth century the mechanics of hands has been studied and has been 

the model for various mechanical constructions, primarily for protheses and telema- 

nipulators, manipulators controlled remotely[21]. More recently, human hands have 

been analyzed for industrial mechanical grippers and many of them are used reliably 

in assembly settings. They are built specifically for the environment in which the 

grippers have to work, and they are so different for each application that a standard 
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industrial hand that satisfies every need cannot be built. Their functions are mostly 

clamping, vacuum, and magnet which are activated by pneumatic, hydraulic, electric 

and mechanical force. 

The first dexterous mechanical hand that resembled a human hand was the Utah/MIT 

Dextrous Hand built about 10 years ago[14]. The hand itself was approximately an- 

thropomorphic in size, including three tendon operated fingers and a thumb with 

multichannel touch sensing capability. Each finger included three parallel axis joints 

and a proximal joint which are independently controlled using a tendon system to- 

talling eight tendons and actuators per finger. 38 actuators are mounted in the 

forearm for controlling the tendon, and a pneumatic approach is used due to its low 

weight and compactness. Optical fibers and birefringent materials were used for their 

touch sensing system. The control system simply delivered joint angle commands to 

servo systems at each joint so that the hand assumed various desired configurations 

integrating touch sensors and tendons. This work was significant in a way that it 

could be used for multiple purposes in research, giving the capability to inegrate ad- 

ditional systems such as learning algorithms or more sensors in an anthropomorphic 

way. 

2.1.3     Humanoid 

Attempts 

Originally, most humanoid robots were clever adaptations of existing industrial robots 

or specialized mechanical arms. Later there were explicit attempts to make robots 

anthropomorphical in appearance and capabilities. Wabot was exhibited at the 

Japanese Expo in 1985 and it played a piano, with its precise and fast finger works[32]. 

It had a human appearance and if examined briefly, it could visually fool people that 

it had a cognitive system. Though this robot design was inspired by the human 

hand motor system, it was not practical in any sense of the word. It was bolted in 

front of a piano, and the only capablility it had is to play a piano.  No other tasks, 
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lit /<► 

Figure 2-1: A picture of Cog. 

even just to manipulate objects, could have been done by the robot. While various 

engineering enterprises have modeled their artifacts after humans to one degree or 

another, nobody seriously tried to couple human like cognitive processes to these 

systems methodologically. 

Cog 

At the MIT Artificial Intelligence Laboratory, a research group headed by professors 

Rodney A. Brooks and Lynn Andrea Stein is currently developing an integrated phys- 

ical humanoid robot named Cog [3] shown in Figure 2-1.   This system will include 
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vision, sound input and output, and dextrous manipulation all controlled by a con- 

tinuously operating parallel MIMD computer as the brain. The processors are 16Mhz 

Motorola 68332s in standard boards which plug 16 to a backplane. The backplane 

provides each processor with six communications ports and a peripheral processor 

port. It has the capability to connect up to 256 processors by stacking 16 backplanes 

to a single front end processor. Each 68332 communicates up to 16 Motorola 6811s 

which are single chip processor with onboard memory, timer, SPI, analog to digital 

convertor, and some I/O ports. The motor skills that are handled at the spinal level 

for humans are processed by 6811 motor boards to act like spinal cords. The goals of 

this project are to build a prototype general purpose autonomous robot and to un- 

derstand human cognition. This is the first time anyone has attempted to construct 

an embodied autonomous humanoid intelligent robot. 

Currently we are at a primitive building and integrating stage in hardware and 

software including arms, hands, ears and eyes. As we put the pieces together we 

will be forced to understand the physical constraints which can lead to a better 

understanding of how we should build the pieces. When all the parts are integrated 

to our one front end processor, we will be able to treat Cog as a whole to attack 

problems that require coordinating the whole body. A simple operation, such as 

picking up a bell, requires sound localization, torso control, visual feedback and arm 

and hand manipulation skills. This kind of task may only be done at the cognitive 

level using a system like what we are building right now. Cognitively, this project is 

important because studying the way Cog decides to execute certain actions may lead 

to an understanding of our own cognition. 
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2.2    Embodiment of Hand 

2.2.1     Overview 

Why? 

The importance of embodiment in order to understand human cognition is a contro- 

versy in the artificial intelligence community. Many argue that a simulation of such a 

system can satisfy the need, and would not waste the time needed to build a complex 

hardware creature. We live in a noisy environment and we are capable of learning 

to ignore irrelevant noise. For example, we can recognize a telephone even when the 

edges are dirty or chipped, which cannot be easily done with the current computer 

vision technology. We are restricted by the limited technology that allows us to build 

such a system, but also limited by what we know about human biological systems. 

Another example to show the importance of embodiment is the study of bird 

wings. The physics of bird wings have been studied to embody in a human scale with 

our dream to fly since the 16th century. With a solid understanding of aerodynamics, 

a computer simulation can be built to understand the fuctionality of the wings better. 

Even for a simulating such a simple environment as air, many assumptions such as 

wind and pressures need to be made in order for the simulation to work consistently. 

While studying such a system can show important points in the flying mechanism, 

the system still need to be physically built to understand other constraints that occur 

only in the real world setting. 

The attempt to understand human functionality is much more complicated than 

studying bird wings. Many assumptions, probably including some that are not valid 

in the real environment, are necessary because we do not know enough about how 

we process information that we receive from the environment. Therefore, it is more 

crucial to build such a system physically to understand its constraints and limitations. 

As we build the system, still with many assumptions and using existing technology, 

we may realize human's functionalities that simulations have not been able to teach 
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Figure 2-2: A picture of Cog's hand. 

us. By attempting to build an anthropomorphic hand, many physical limitations 

and constraints are realized, and those realizations are requisite to unraveling the 

questions of human physical and cognitive functions. 

Physical Setting 

This project uses an anthropomorphic scale hand which has three fingers and an 

opposing thumb shown in Figure 2-2. Each finger has two coupled joints that are 

controlled by a miniature steel cable. Due to the nature of a coupled cabling strat- 

egy, it is compliant. There are four motors controlling each finger, generating a 

maximum torque equivalent to holding a 0.5 pound object at the tip of a finger. 

Motors are integrated with rotational potentiometers to detect the motor positions. 

Force/pressure sensors cover the surface of all fingers. A finger has two phalanges 

and each of it has two force sensors. The thumb has two force sensors and the palm 

has four position sensors in addition to a force sensor. All the sensory readings are 

multiplexed and converted to digital signals at a Motorola 6811 microcontroller which 
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is integrated on the top of the dorsum. The 6811 has four analog-digital converter 

ports, four pulse width modulator ports which are connected to the motor drivers and 

all four motors. The microcontroller acts like a spinal cord, containing a PID control 

loop and handling reflexive reactions. A larger microcontroller 68332 is interfaced for 

higher operations such as learning and coordinating with other features such as eyes 

and ears. 

2.2.2    Constraints 

Strength and Precision 

Many researchers have successfully created hands that are reasonably small and 

strong, interfaced with large forearms in order to carry many high-powered motors, 

precision encoders, and gears [2, 30, 31]. However, in creating a human scale model, 

it is crucial to minimize the weight and the size of the hand. As a trade off, increas- 

ing the strength and the precision becomes complex. Minimizing wires and cables is 

achieved by placing actuators close to the joints, and local processors close to all the 

sensors and motors. Optimally everything should be contained within the fingers and 

the palm. In order to contain motors in the hand, both the number and the size of 

motors need to be decreased significantly from all the existing mechanical hands. To 

reduce the number, all the joints in a finger are coupled with a tendon cable which is 

pulled from both directions for curling and expanding by a single motor. This strategy 

limits the strength of the hand due to the conciseness of the motors, the compliancy 

of the cabling strategy, and the material of cables. To avoid using large encoders, 

rotational potentiometers are used at the expense of reducing the accuracy from 16 

bits to 8 bits of information. Needless to say, small parts are difficult to construct, 

which increases the complexity of these constraints. Though, when the human hand 

mechanism is analyzed for infants, each finger has minimal torque and it is impossible 

to even estimate the angles of the joints without visual feedback or external applied 

force. Thus, studying infants' learning skills only requires the strength of industrially 
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available miniature motors and the precision of potentiometers read through 8 bit 

analog to digital converters. 

Stability and Orientation 

For multi-finger manipulators, stablizing the grasp is a critical issue. According to 

some investigations clone in the past, a four finger manipulator can handle 99% of the 

parts that a five finger manipulator or human hand can handle, a three fingers can 

handle 90% and two fingers 40%. For the humanoid hand, a three finger with a thumb 

configuration is used to reinforce the stability for various shaped object manipulation 

[30]. For example, the last finger can be used as the base to hold a small object. 

Young infants do not use the thumb as an opposing finger, and use all fingers like a 

one degree of freedom compliant gripper. As learning proceeds, the opposing thumb 

becomes the most important finger for manipulation and slowly increases the degrees 

of freedom to more than twenty-five, though many are coupled by the nature of the 

ligament structure and location of tendon insertions. For our embodied hand, all four 

fingers have a designated motor which gives each one degree of freedom. However 

three fingers have two coupled joints yielding a total of seven degrees of freedom 

visually. From the construction of the hand, various objects can be manipulated 

within the torque limit of the arm and the hand. 

The orientation of the hand during reaching is an important part of a grasping 

procedure. Babies' initial reaches are awkward, but learn to coordinate and turn it 

into a smooth movement within a few months [34]. The initial reaction during reaching 

is to orient the palm toward the desired point of contact, and preshape the fingers 

according to the shape of the object. Unfortunately, without visual feedback or arm 

movement coordinating with the hand, those precedures need to be ignored. For this 

research, the orientation of the hand is fixed to have the palm perpendicular to the 

ground for simplicity. 
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2.2.3 Sensorimotor System 

Meissner corpuscles are elongated encapsulated endings that are oriented with their 

long axis perpendicular to the suface of the skin. They are quite numerous in the 

skin of fingertips, and they are largely responsible for our ability to perform fine 

tactile discriminations with our finger tips. Unfortunately, this system is still not well 

enough understood to implement it to an inorganic form. Tactile sensing research is 

an ongoing field where any commercially available skin is not good enough yet to be 

interfaced to achieve human like precision. For creating a human like system, many 

constraints need to be considered to find an optimal solution within our existing 

technology. First, the skin needs to be flexible to adopt the shape of the surface of 

fingers and palm. Second, the size and the number of wires needs to be minimized 

for creating a human scaled hand. The phalanges are hollowed to allow wires to run 

through them, but it is still a very limited space. 

One of the main goals of this project is to learn from building a cognitive system 

and learn how such a system should be built. For this purpose, we can start off using 

a tactile system that is not as accurate as human finger skin. If the cognitive system 

we build tells us in the future that more precise tactile sensors play a crucial role for 

learning, we will try to add such a system. Since the most important information 

needed is the force information followed by the position of contact, many force sensors 

and several positions sensors are used for the hand. 

2.2.4 Learning 

Learning manipulation in an unpredictable, changing environment is a complex task. 

It requires a nonlinear controller to respond in a nonlinear system that contains 

significant amount of sensory inputs and noise[23]. Investigating the human manip- 

ulation learning system and implementing it in a physical system has not been done 

clue to its complexity and too many unknown parameters. Conventional adaptive 

control theory assumes too many parameters that are constantly changing in a real 
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environment [33, 37]. For an embodied hand, even the simplest form of learning pro- 

cess requires more intelligent control network. Wiener [36] has proposed the idea of 

"Connectionism", which suggests that a muscle is controlled by affecting the gain of 

the "efferent-nerve - muscle - kinesthetic-end-body - afferent nerve - central-spinal- 

synapse - efferent-nerve" loop. Each system within the loop such as efferent nerve 

contains its own feedback loop system. This kind of loop is inherently nonlinear 

with the capability to take many noisy inputs and may be implemented in a physi- 

cal hand. It is still very limited to what kind of learning strategies can be used for 

an implementation, but as an individual system, standard competitive learning and 

backpropagation algorithms are used. To connect the whole system, a connectionist 

implementation of reinforcement learning is used for the embodied hand. 
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Chapter 3 

Hardware Design 

This chapter presents the hardware design of Cog's hand. The hand is made of 

aluminum and designed to minimize weight and size. It has a microprocessor and 

sensor interface circuit on top of the dorsum and has 36 total sensors on the surface 

and joints. 

3.1     Mechanical Design 

3.1.1     The Structure of Hand 

The hand has a 4.0 inch x 4.0 inch palm with three fingers and an opposing thumb 

where the diameter of fingers is 1.0 inch. To minimize the weight and allow for space 

to run cables and wires, each phalange is hollowed out using a lathe to 0.02 inch 

thickness. Joint design is done as in Figure 3-1 by setting, 

max(0)    =   95° (3.1) 

max(»    =   90° (3.2) 

where 6 is the angle for the proximal joint and <p for the distal joint. There are 

physical limits at the proximal joint and the distal joint as shown in Figure 3-2 so 

33 
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~    o Z n 

Figure 3-1:    A  diagram of joint  with a bending  angle:    frontal  view(left),  side 

view(right). 

that when fingers are fully open, 

min(ö)    =    -5° 

min(</>)    =    —10°. 

(3.3) 

(3.4) 

Within a joint, there is a miniature steel pulley of diameter 0.5 inches and a shaft 

that is fixed to the phalange above the joint(i.e.,the pulley in distal joint is fixed to 

Distal), and friction is minimized using miniature ball bearings. Cables are run in 

such a way that both curling and expanding are controlled using one continuous cable 

and one motor as shown in Figure 3-3. This cabling mechanism works because the 

rotational force applied by a motor results in a tension in the cable that causes the 

friction force of the pulleys to move the joints(Figure 3-4). The steps of applied and 

induced force effects of this mechanism are illustrated using a finger curling example: 

1. Motor applies a tension to the inner cable. 

2. Friction2 becomes strong enough to rotate the pulley in the proximal joint. 
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Figure 3-2: Physical limits for a proximal joint (left) and a distal joint(right). 

motor 

Opening Motion Closing Motion 

Figure 3-3: Cabling configurations of curling and expanding motion. 
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motor 
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Figure 3-4: Theory of cabling mechanism with applied and induced forces. 

3. Proximal comes in a contact with an object or reaches a physical limit causing 

a resistive force. 

4. The resistive force from step 3 overcomes friction2 causing the cable to slip over 

the pulley in the proximal joint applying tension in the cable in Proximal. 

5. Frictionl is induced to rotate the pulley in the distal joint. 

6. Distal comes in a contact with an object or reaches a physical limit causing a 

resistive force. 

7. The cable reaches its maximum tension and stops. This is an optimal grasping 

configuration for this finger. 

To achieve such a coupling effect for the joints, the tension of the cable and the 

potential friction for the surface of pulleys need to be considered in detail. If the 

pulley potential friction is too high, the resistive force at step 3 cannot overcome the 

friction and the distal joint could not be controlled. When the cable tension is higher 

than required as the finger curls, the proximal joint is controllable whereas the distal 

joint cannot be moved. The proximal joint is still controllable because the tension of 

the inner cable applied by the motor is larger compared to the force against it due 

to a minor slip of outer cable that occurs within the proximal joint to alleviate the 
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friction    jn 

friction    out 

Figure 3-5: A free-body diagram for a distal joint pulley. 

tension between the motor and the proximal joint. Due to this effect, the tension of 

the outer cable between the distal joint and the proximal joint increases and induces 

the frictional force against the direction of friction that causes the joint movement 

as shown in Figure 3-5. As a result, there is not enough friction to move the distal 

joint. When the tension is too low, the compliance becomes too large to weaken the 

grasping force. The optimal total cable length is calculated using the formula, 

^Distal + I Proximal + ?) + —TTcl (3.5) -j   ~ | ~\vuisiai    i    "rroximai    i    ~ /    '      ~ 

where L is the total cable length, lm is the length of m, z is the length between 

the distal joint to the cable terminal point and d is the diameter of pulleys. 0.04Z, 

is added to achieve an optimal tension and compliancy. The material of the cable, 

nonstretching nylon coated steel is chosen for its durable characteristics, but it still 

stretches over time. A tension cranker is designed as shown in Figure 3-6 so that 

tension can be adjusted to an optimal strength when the cable is stretched over time. 

The cable is terminated using cable locks within Distal as shown in Figure 3-7. 

At the palm, the fingers are separated by 0.5 inches and the outer fingers are fixed 

to the palm at 15 degrees away from the middle finger. Each finger has two phalanges 
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Figure 3-6: Tension cranker design for adjusting the stretched cable length. 
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Figure 3-7: Cable termination using cable locks. 
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and their lengths are chosen to avoid colliding with other fingers, yet allowing the 

tips of all fingers to meet at one point when they are fully closed, which is shown in 

Figure 3-8. Using this figure, Distal and Proximal lengths are calculated using, 

Figure 3-8: Diagram of hand used to determine the length of phalanges: sideview(left) 
and frontview(right). 

b   = 

Zi| cos 6»| + /2|cos(<£ + 0)| + b 

a + 0.5 
tan 15° 

0.5 
sin 75° 
0.75 + 0.75 

tan 15° 

0.75 sin 15°. 

+ c 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

;3.io) 
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and having a total finger length to be 4.5 inches, a set of linear equations can be 

formulated to 

/1 + /2   =   4.50 (3.11) 

0.087/j + 0.996/2   =   1.999 (3.12) 

which gives the length of Distal to be 2.75 and the length of Proximal to be 1.75 and 

the phalanges are built accordingly. The tip of a finger is made of polyethylene, and 

covered with vinyl. An opposing thumb has one degree of freedom and the length is 

chosen to meet with other finger tips for the purpose of fine manipulation. It is fixed 

to the palm and the proximal joint is controlled with a steel cable as in the other 

joints. Because this joint is not coupled, the torque exerted for the thumb is larger 

than for the other fingers. 

3.1.2     Motor Selection 

There are four motors controlling each finger and they are contained within the palm 

(see Figure 3-9) to minimize the size. The motors and gearboxes were chosen by 

calculating the required torque and speed. At no load, the desired maximum angular 

velocity of the joints is 2 rps = 120 rpm, permitting the finger to open and close 

fully in 0.5 seconds. Considering finger's own weight and applied force, it is assumed 

that the overestimated maximum load is 1/2 pound centered one inch away from the 

motor. With this assumption, the stall torque is 

r = 0.51bs x lin = 16.0oz-in. = 0.12Nm. (3.13) 

Therefore the required power of the motor assuming 60 percent efficiency is 

0.12(47r)      , r,,T  ,, /a -t i \ 
P = TU} = —- = 1.514 atts. (3.14) 

0.60 
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Steel Cable 

Pulley 

Figure 3-9: Inside the palm. 

Maximum intermittent power output(Watts) 2.7 
Maximum continuous power output (Watts) 2.0 
Maximum emciency(%) 76 
No load speed(RPM) 11,300 
Stall torque(oz-in.) 1.25 
Maximum continuous torque(oz-in.) 0.35 
Weight (oz) 0.71 

Table 3.1: The characteristics of MicroMo's DC MicroMotor 1331. 

To meet these criteria and to minimize weight and size, MocroMo's DC motor series 

1331 with a 15/5 76:1 gearbox was chosen. The characteristics of the motor and the 

gearbox are shown in Table 3.1 and Table 3.2. 

3.1.3     Grasping Capability 

The size of objects to be manipulated is largely determined by the length of the 

phalanges. By taking advantage of the four fingered hand, large or non-trivial shaped 

objects may be grasped. For example, ring finger can be used as a base to hold a large 

object that other fingers cannot wrap all the way around. The manipulability is also 
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Reduction ratio 
Maximum continuous output torque(oz-m.) 
Maximum intermittent output torque(oz-in.J 

Efficiency' 
Weight(oz) 

76 : 1 
14.2 
42.4 

68 
0.61 

Table 3.2: The characteristics of MicroMo's gearhead 15/5. 

dependent on the material of the object grasped. The surface of the hand is covered 

with a thin layer of vinyl to increase friction. When the static friction between the 

skin and the object overcomes the gravitational force, the object does not slip off. 

To analyze the friction, one point of contact with an object is considered. The static 

friction between the object and the skin is given by, 

f < nsN (3.15) 

where / is the frictional force, pa is the coefficient of static friction, and Ar is the 

magnitude of the normal force. Figure 3-10 shows the object at the moment that 

sliding is about to take place. The forces that act on the object are the normal force, 

TV, that is the grasping force applied by fingers pushing into the object, the weight 

of the object W, and the frictional force, /. Because the object is in equilibrium, the 

resultant external force acting on it must be zero, 

J2 F = f + W + N = 0. (3.16) 

The x component of this vector equation gives, 

Y,Fx = f-W = 0. [3.17' 

At equilibrium, the static frictional force has its maximum value. Using Equation 3.15 

and Equation 3.16, we get 

/ = fi3N = W. (3.18) 
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Figure 3-10: A free-body diagram of object on skin. 

When an object is grasped, the finger is positioned using PID control such that a 

firm grasp is achieved by having a constant N. jis is a combination of fisi} ßs of latex 

and jiSOl fis of the object, and W is object dependent, therefore, a relationship, 

ßsl + ft so 

W 
= constant (3.19) 

can be achieved. When a learning tool is available such as described in Chapter 4, 

various grasping positions can be considered to improve the skill as infants do during 

their manipulation exploratory stage. 
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3.2     Computation Tools 

3.2.1     Spinal Cord Level Computation 

A motor board with a 6811 and a sensor interface board are mounted on a dorsum 

as shown in Figure 3-11. They function like a spinal cord by controlling finger move- 

ments such as reflexes.  The Motorola MC68HC711K4 includes CPU, 24 Kbytes of 

Figure 3-11: A picture of the dorsum with a motor board and sensor interface board 

mounted. 

EPROM, 640 bytes of EEPROM, 768 bytes of RAM, four 8-bit pulse-width modu- 

lators, 8 channel 8-bit analog-to-digital converters, and other MC6811 features. The 

K4 has been chosen specifically to take advantage of onboard PWM pulsors with 

frequency and duty-cycle variations which allows the whole hand to be controlled by 

only one MC6811 chip and eliminate a complex sequence of latches and flip-flops. 

PWM frequency can be specified using two bytes between 0.05Hz to 40KHz using 

an 8MHz external crystal clock.   The overall picture of the motor board design is 
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Figure 3-12: An overall picture of the motor board design using Motorola MC6811. 

shown in Figure 3-12. The board is designed in a way that optoisolaters are used 

to isolate motor signals from analog/digital signals. A motor driver L293E takes a 

duty-cycled PWM signal and a direction, and sends a processed signal to a motor. 

The chip is also capable of sensing the load current which becomes part of the sensory 

information. The potentiometer outputs and the rest of the sensory information are 

multiplexed and fed to the analog-to-digital converter ports. The serial line is used to 

communicate with a CPU and download programs to EPROM and EEPROM, and 

the 68332 interface module decodes and connects to a SBC332 board that handles 

the brain level computation. 
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Figure 3-13: A backplane interfacing 16 processors. 

3.2.2     Brain Level Computation 

The computation clone at this level is the massively parallel system consisted of par- 

allel processing system and an interface between a Macintosh computer acting as a 

front end processor(FEP) and a processor. The design is done in a way that the 

whole process can be expanded to 16 backplanes and each backplane consisting of 

16 processing elements as shown in Figure 3-13[15]. A commercially available Vesta 

SBC332 Board is used as the basic processing element, each dedicated to control a 

specific subsystem of the whole robot. Each board contains a Motorola MC68332 

microcontroller and onboard RAM and EPROM up to 1 Mbyte each. Those inde- 

pendently controlled processors communicate through dual port RAMs(DPRAMs), 
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which allow two processors to share the memory space within it, permitting informa- 

tion exchange with other processors to complete tasks such as hand-eye coordination. 

Viewing from this point, the MC6811 motorboard acts as a slave of this system. The 

FEP is interfaced entailing the use of a Motorola MC68332 to act as an intermediate 

front end processor(InterFEP). FEP and InterFEP are interfaced with a SCSI bus and 

InterFEP and the backplanes are interfaced through a serial port. The programming 

environment is based on the Macintosh and in particular runs in Macintosh Common 

Lisp. L, developed by Brooks[4] is a downwardly compatible subset of Common Lisp 

and it is run on each MIMD machine node. L is used to program the high level 

learning routines that are introduced in the next chapter. 

3.3     Sensors 

3.3.1     Exteroceptors 

Manipulation learning does not occur without fully utilizing exteroceptor and propri- 

oceptor sensory feedback. As exteroceptors, force sensing resistor(FSR) devices which 

resemble membrane switches are used. The sensors are less than 0.15 mm thick film 

that are wrapped around the surface of the fingers and the palm. The construction 

of the sensor is based on two polymer films of sheets as shown in Figure 3-14. A 

conducting pattern is deposited on one polymer in the form of a set of interdigitating 

electrodes and a proprietary semiconductive polymer is deposited on the other sheet. 

The sheets are faced and laminated together with a combination adhesive spacer ma- 

terial. With no applied force, the resistance between the electrodes is high, and the 

resistance drops as the force increases, following a power law relationship. Two 2 inch 

x 2 inch square FSRs are wrapped around each phalange. For the palm, four posi- 

tion sensing resistors(PSRs) and a large FSR which covers the entire palm are used. 

A linear potentiometer, a kind of PSR shown in Figure 3-15, measures the position 

of an applied force along its sensing strip.   A voltage, generally 5 volts, is applied 



48 CHAPTER 3.   HARDWARE DESIGN 

Semi-conducting 
Polymer 

Interdigitating 
Electrodes 
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Figure 3-15: Commercial Position Sensing Resistor structure. 
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Figure 3-16: PSR equivalent circuit. 

between the Hot and Ground ends of the fixed resistor strip. When force is applied 

to the force sensing layer, the wiper contacts are shunted through that layer to one of 

the conducting fingers of the resistor strip. The voltage read from the wiper is thus 

proportional to the distance along the strip that the force is applied. An equivalent 

circuit for this arrangement is shown in Figure 3-16. Position sensing resolution can 

be approximated by 

Ax = 
2wl 
wf 

(3.20) 

where ws is the width of the conductive fingers, normally 0.5 mm, and wj is the width 

of the applied force with an assumption of a constant force across the force footprint. 

One drawback of this material is that the force measurement is of one point only. 

If multiple locations are stimulated, the barycentric position, a positional average 

weighted over the force distribution, 

rhot 

fground F(X)dx 

(3.21) 

where x is the positions of contact and F(x) is the force distribution, is measured. 

Since these measurements are processed at a sensor interface board on the dorsum, 

wires must go through the inside of the phalanges and the constantly moving joints. 

To accommodate the situation, the sensor is modified by eliminating an interface strip 

and attaching commercially available durable and flexible wires to the surface of the 
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Figure 3-17: A block diagram of a sensor interface board. 

film using a conductive adhesive epoxy. The epoxy is chosen so that it solidifies in 

room temperature, avoiding to melt the film of the sensor, and the hardness value 

is low when solidifies. All the wires are connected to a sensor interface board where 

the sensed resistance values, RFSR* and RPSRS, are processed. The block diagram of 

the interface board is shown in Figure 3-17. The FSR signals are interfaced using a 

simple force to voltage conversion as shown in Figure 3-18. The output is described 

by the equation, 

rout 
v+ 

(3.22) 
1 + RFSR/RM 

where Vout is the output voltage, V+ is the supply voltage, and RM is the measuring 

resistor value. According to the equation, the voltage output increases proportional 

to increasing force. RM is chosen to maximize the desired force sensitivity range and 

4.7 KÜ is used for the hand. For the PSRs, an output can be read through a simple 

voltage follower as a buffer as shown in Figure 3-19. In order to prevent the high 

current from flowing through the sensor during the measurement, it is important to 
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Figure 3-19: A PSR. interface: A voltage follower. 
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Figure 3-20: A rotational potentiometer measuring the position of a motor. 

incoporate a buffer because a low-resistance load is driven by a source with a high 

resistance requiring isolation. 

3.3.2     Proprioceptors 

Proprioceptors respond to changes in the position of the body or its parts. Funda- 

mentally, the use of motors is not anthropomorphical since joints for human are not 

controlled by rotational forces, but a force applied by muscles. Muscles receive an 

abundant supply of nerve endings acting as proprioceptors, while their functionality 

is still not very clear. Since muscles are still impossible to implement in the way our 

muscles work, the usage of actuators is not avoidable. With an implementation using 

motors, it is possible to measure the rotational position of the motors. To minimize 

size and weight, rotational potentiometers are used instead of optical encoders as 

shown in Figure 3-20. The information gathered is filtered through an RC circuit 

and processed to an 8 bit digital signal at a MC6811 analog-to-digital converter port. 
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This gives a 28 resolution per a rotation of a motor, which accounts to 180° resolution 

between curled and expanding configuration of a finger, which is much more precise 

than what humans are capable of measuring without visual feedback. 

Another proprioceptor used is a current sensor that is a built in capability of a 

L293E motor driver. A load current , which can be as high as two volts, is converted 

to voltage information with a resistor avoiding a high current flow to the microcon- 

troller. This information both protects the motor from overheating, and permits a 

measurement of how hard a finger is at work at each instance of a grip. 
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Chapter 4 

Learning Process 

Learning, storing past experience in the brain to guide future action, is an effective 

way of refining hand movements. In the early 20th century, Ivan Pavlov argued that 

conditioned reflexes form a basis for all learned behavior. In the I930's Burrhus F. 

Skinner argued that only outcomes such as rewards and punishments caused learning, 

though many psychologists argued against it. As of today, the nature of learning is 

still not clear. 

This chapter presents two nervous systems that have been implemented for this 

thesis. One is a system that is normally controlled at the spinal cord level such as 

reflex, and the other is a higher level learning system that utilizes neural network 

theory. The overall nervous control system is shown in Figure 4-1. 

4.1     Low Level Controller 

The low level calculations are all done in the MC6811 mounted on the palm and 

programmed using Assembly language. 
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Figure 4-1: A block diagram of overall nervous control system implemented. 
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Figure 4-2: A simple block diagram of feedback control system. 

4.1.1     PID Control 

The control structure for the finger movement needs to be a closed loop to compensate 

for noise from the environment and to let the system converge at all times. The 

dynamics of a DC motor in a control loop shown in Figure 4-2 can be expressed as 

r$ + A'o$ + $ = A'i (Cin + K2Ti) (4.i; 

where r is the time constant, $ is the motor rotational position, Cjn is the input 

from a controller, T) is the load torque, and the A'm's are constants related to the 

motor characteristics, r is determined by the characteristics of the motor and when 

it becomes smaller, the closed loop system becomes faster and more desirable. From 

Equation 4.1, using Laplace Transform, the motor process can be written as 

Motor = Ki 

TS2 + K0s + 1 ' 
(4.2) 

For this system, a proportional plus integral plus derivative(PID) controller is chosen 

because of its ability to provide an acceptable degree of error reduction while simulta- 

neously providing sufficient stability and damping[9]. For this system, the controller 

can be written as 

(4.3) Controller = G'(l + — + TDs)E 
ITS 
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Figure 4-3: A block diagram of finger position control system. 

where G is the feedback gain, 7/ is constant called integral time, TD is a constant 

called derivative time, and E is the error. For the sensor, a potentiometer reading 

$ is used, so the gain for the sensor is 1. The system described above is shown in 

Figure 4-3, and the output is calculated to be 

<P = 
KjEGTpTrs2 + (EGTi + K2TITl/EG)s + EG 

TIS{TS* + K0S + 1) 
(4.4) 

where E is A<& containing no s term.  Therefore, this system converges with time at 

all time. 

4.1.2     Reflex 

Reflex is a system that is controlled at the spinal cord. A curling reflex, only exists 

for infants, and allows the fingers to curl when the inner surface of palm is touched. A 

releasing reflex reaction occurs when an intolerable amount of stimulus is applied to 

the skin. A releasing reflex is useful for both avoiding the physical damage of the hand 

and to learn the limit of its capability. A curling reflex is important at the learning 

stage, but it can be eliminated eventually. Based on these ideas a very simple reflex 
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system is implemented using force sensing resistor(FSR) sensory feedback. When an 

FSR senses a signal higher than its threshold resistance, the joints are commanded 

in a way that the finger moves in the opposite direction from where the stimulus is 

applied. The normal command sent to motors are overwritten by the reflex signals. 

If the inner skin is weakly stimulated, all the fingers are commanded to curl until the 

sensor reading reaches 30. This pressure is not strong enough to hold an object, but 

it simulates babies' reflex systems. This curling reflex initiates the learning process 

described in the next section. 

4.2     High Level Neural Networks 

Due to the lack of visual and auditory feedback, only the primitive learning processes 

that occur locally for the hand are considered in this thesis. For infants, different 

learning processes occur interactively and simultaneously. For example, think of a 

situation where an infant tries to lift an object off the ground, grasping, lifting the 

hand, and failing to lift up the object. From visual feedback, the infant recognizes 

that the object has slipped off the hand. By repeating this process, they learn to 

connect the visual "slip" with their sensory information. Adults can apply the right 

amount of force to hold an object by applying enough by not excessive force to an 

object without slipping. This operation is possible due to repeated practice at the 

initial grasping learning stage. Simultaneously, when the infant touches and drops the 

object, joint proprioceptors and exteroceptors on the skin react in a certain way. After 

some repetitions, the infants connect the relationship of sensory information with 

objects' hardness, texture and weight. All those separate learning processes merge to 

create our consistent stable manipulation skills. For this thesis I implemented three 

learning processes separately, each utilizing neural networks using different strategies. 

First, object hardness recognition learning is conducted using a competitive learning 

strategy. Second, a three layered backpropagation algorithm is used to train the shear 
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detection. By applying those two trained networks, the optimal grasping action is 

searched by a reinforcement learning strategy (that is somewhat similar to Q-learning 

technique). 

4.2.1     Hardness Recognition Network 

Theory of Competitive Learning 

Topologically, there is substantial evidence for the spatial self-organization of brain 

areas that contain sensory or motor maps [8]. For some stimuli, there is some form of 

competition between activities of neurons on the neural surface. The idea of compet- 

itive learning was originally proposed by Rosenblatt [29], and implemented by many 

[17] successfully. Competitive learning contains lateral feedback, which depends on 

the lateral distance from the point of its application. From biological inspiration, 

lateral feedback is described by a Mexican hat function, shown in Figure 4-4. A short 

The Mexican hat function of lateral connections. 

200 

Figure 4-4: The Mexican hat function of competitive learning lateral connections. 

range lateral feedback has an excitatory effect and a, penumbra lateral feedback has 

an inhibitory effect.   The output signal of neuron i, t/,-, at time step n + 1 can be 
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expressed in a following difference equation: 

V K 

yi[n + 1) = V'E wiJxi + ß  E   c^?A+A.(n)),    fon = 1, 2,...., JV (4.5) 

where V'(/) is some nonlinear function to ensure yi > 0, Wij is the synaptic weight of 

jth feedforward connection, p is the number of input terminals, Xj is the jth input 

signal, ß is the feedback factor that controls the rate of convergence of the relaxation 

process, K is the radius of the lateral interaction, c^ is the lateral feedback weight 

connected to neuron i, and N is the number of neurons in the network. 

Application 

Utilizing competitive learning theory, the hardness of objects can be categorized over 

time. The experiment is conducted with eight different objects of same size and 

different compressibilities. Each object is touched by curling one finger around the 

object very slowly. Precisely taking three seconds to fold fingers fully, hold for two 

seconds, and straighten the finger taking three seconds. The sensory readings are 

taken from both force sensors on the finger and the potentiometer reading of the motor 

controlling the finger which are converted to an eight bit digital information. The 

program is written in 6811 in a way that the readings are recorded every 0.14 seconds. 

The raw data extracted from a finger is shown in Figure 4-5. The potentiometer 

reading, p(t), indicates the position of the finger. The derivative of p(t) has three 

distinct characteristics. 

dp(t) 

dt 

C\ Ci = constant ^ 0 

-C2(*-*i) + C3 (4.6) 

0 

As the finger curls, the motor moves at the constant rate when the finger does not 

contact the object surface.   At this stage, dp{t)/dt is a non zero constant.   When 
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raw data from force sensor raw data from potentimeter 

2 2.5 3 
time (second) 

2 2.5 3 
time(second) 

Figure 4-5: Hardness recognition raw data extracted from a meduim hardness object 

during the finger folding stage. 

the object is firmly grasped, the finger stops curling and results in dp(t)/dt -> 0. 

The significant difference between different hardness object can be seen in the stage 

where dp(t)/dt is not constant. This stage signifies that the object and the finger 

are in contact, but the object's compliancy is letting the finger continue to move. 

Objects have a constant compliance factor, C2, which is proportional to the hardness 

of the object. The comparison of two objects with different hardness are shown in 

Figure 4-6. It seems as if the hardness of objects can be categorized using only this 

information. However, repeated experiments with the finger shows some unexpected 

results which may not be relevant to humans because of our superior tactile sensory 

system. Due to the nature of the force sensors, they are not capable of sensing a force 

smaller than 20 grams. When a very spongy object is grasped, the sensor cannot 

detect the contact until the object is squashed enough to give some force back to the 

finger. Therefore, a very spongy object gives a similar response as a hard object. 

One sensory difference in those two objects is the force reading when the object is 

completely compressed and held. Since the spongy object has the resistance force 

orthogonal to the finger surface, the force reading is much higher than for the harder 

object.   These analysis show why both potentiometer and force sensor information 
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dp(t)/dt for a soft object dp(t)/dt for a hard object 

2 2.5 3 
time(second) 

1.5 2 2.5 
time(second) 

Figure 4-6: J4~ comparison for soft and hard objects. 

are crucial in distinguishing the object hardness. 

Experimental Results 

For each curling experiment, two numbers are extracted and recorded. The first is 

the duration of dp(t)/dt non constant time, At. It is expressed in digital units where 

one unit is 0.14 seconds. The other is the maximum force sensor reading expressed 

in a seven bit digital number. Eight bit information is shifted one to the right to 

eliminate small noise. Eight different objects are tested ten times each and the results 

are plotted in Figure 4-7. Using those data as inputs, a 2 layer, 6 neuron competitive 

network is constructed with random initial synaptic weights and trained. Figure 4- 

8 shows the trained neurons over the input map as they get trained. Since this is 

unsupervised learning, the initial randomness can confuse the neurons to categorize 

somewhat different from what was intended when the training session is too short or 

the learning rate is too high(a confused neuron is shown in Figure 4-9). Even with 

bad initial random weights, such as the one causing the confused neuron, the result 

converges after 500 epochs. Once the network is trained, different inputs can be fed 

to the network to find the category of the touched object. This strategy works well 

for this purpose since there is no clear cut way to categorize objects.   The trained 
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Competitive Learning input dala 
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Figure 4-7: Competitive learning input data- 

network was tested with data taken from objects not used for training and shown in 

Figure 4-10. With very diverse test objects, the sensory readings fell closely to the 

trained neurons. Initially training the network with six diverse hardness categories 

gives a good distribution of graspable objects. Even if an object with dramatically 

different compliancy is found, it only takes roughly 10 experiments to take data and 

500 epochs to retrain, all of which takes less than one minute to do. 

4.2.2     Shear Detection Network 

Theory of Back-Propagation Algorithm 

The back-propagation algorithm is the most popular application of multilayer percep- 

tions for supervised learning. The process consists of a forward pass and a backward 

pass with known desired output signals d(n) where n is the instance of the number 

of training. The inputs is applied to the forward pass network and fed through layer 

by layer. The net internal activity level v\l\n) for neuron i in layer I is 

3=0 

(4.7; 
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4-8: Hardness recognition competitive learning training steps:  '+' are inputs 
are the neurons. 



66 CHAPTER 4.   LEARNING PROCESS 

Competitive Learning: 40 cycles 

10 15 
delta time(0.14 sec/unit) 

Figure 4-9: Competitive learning containing confused neuron(the two neurons around 
(17,70) should be spread apart to the other input cluster around (20, 60)): 

'+' are inputs and V are the neurons. 

Trained Network with various inputs 

delta time(0.14 sec/unit) 

Figure 4-10: Hardness Recognition: Competitive learning trained network with test- 
ing inputs(all the test inputs are clustered around the existing trained neurons) 



4.2.   HIGH LEVEL NEURAL NETWORKS 67 

where w^n) is the synaptic weight of neuron i in the layer / that is fed from neuron 

j in layer / — 1 at iteration n and i/j_1(n) is the function signal of neuron j in the 

layer / — 1. At the output of each neuron in all the layers there is nonlinear smoothing 

function, a sigmoid, 

1 + exp[—v\  («)) 

to make the function differentiable.   At the output layer, L, the set of outputs is 

compared to the desired value giving an error signal, 

e;(n) = di(n) - y\L\n) (4.9) 

which is propagated backward layer by layer against the direction of synaptic con- 

nections adjusting the synaptic weights in the following manner: 

wW(n + 1) = w\l)(n) + a(w\l)(n) - w\f(n - 1)) + //^(n)^"1^) (4.10) 

where ?/ is the learning rate, a is the momentum constant, and the local gradient, S 

is 

6\L)(n)    =   et-(n)y|L)(n)(l-yiL)(n)) (4.11) 

4°(n)    =   ^°(w)(l - yJ°(n))Z;4'+1)(")«'l'+1)(w). (4-12) 
k 

The algorithm is to iterate these computations until the network stablizes within the 

bounds of targeted error. 

Application 

Visually, it is obvious when an object slips from a hand. From repeated shear expe- 

rience, the relationship between the sensory information on the fingers and the result 

develops for infants.   Shear is locally detectable sensory information if there exist 
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multiple rows of pressure sensors perpendicular to the direction of slip. With the way 

the robot hand for this research is oriented, the palm is perpendicular to the ground 

and fingers are horizontal, which makes the three fingers orthogonal to the direction 

of slip. In order to simulate the shear learning process, sensory data from the fingers 

are used as inputs and the visual feedback about the existence of shear is used as 

the desired output to train a feedforward network. Since shear is a time dependent 

process, the input signals have to contain multiple time space sensor readings. The 

size of the input signal vector is defined as 

(row,col) = (tf,mtf) (4.13) 

where t is the number of discrete time steps, / is the number of finger sensors used 

and m is the number of sensory reading levels. This size needs to be minimized in 

order to speed up the learning operation. Straight out of the microcontroller, there 

axe m = 27 sensory reading levels. Obviously seen from equation 4.13, it will take all 

day to just feed forward an input of this size. Also for a noisy environment, this is 

not an optimal implementation. As a solution, m is reduced to two numbers, 5 and 0, 

as the maximum and the minimum inputs. Back-propagation classifier can generalize 

the numbers between maximum and minimum well with an optimal number of layers 

and without overtraining. When the data is overtrained, the inputs are overfitted and 

cannot adapt the values between 4 and 1. Reducing m to two still contains enough 

information conserving the physics of shear and makes the calculation much simpler 

and faster. Since slipping is not a reversible operation without an external force 

applied, recording two discrete time steps with an optimal step size is satisfactory. If 

the step is too small, most of the calculation will be wasted detecting no changes in 

the readings. However, if the step is too large, the shear will not be detected quickly 

enough.   To calculate the maximum speed of object slipping, assuming no friction, 
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the equation 
1 

x - x0 = v0t + -at2 (4-14) 

can be used. Since Vo = 0, time it takes for a point of an object to slip from one 

finger to the other is 0.06 seconds. Therefore a step size of 0.28 seconds is chosen. 

With those assumptions, the input vector has the size of (6, 64). When the columns 

of the vector are examined, there are 10 columns of inputs that are not realistic or 

are ambiguous so the size can be reduced even more to (6, 54). The desired output 

data is one bit information, 1 being shear detected and 0 being no shear. 

Experimental Results 

Having six input nodes and one output neuron, a four layer with two hidden layer 

feedforward network is constructed. Because of the simplification made for the sensory 

inputs, by rounding up the data and reducing the m to smaller numbers as following, 

81 ~ 127 ^5 

61 ~80 ^4 

41 ~60 ^3 

21 ~40 ^2 

1 ~ 20 -» 1 

0 -»0 

(4.15) 

a four layer network was found most optimal for the generalization to occur well. The 

inputs are taken from the sensors on the three fingers as the fingers curled around the 

given object, a paper cup. Since the hardware is not ready to run the hand completely 

autonomously, some external force was applied to reach the grasping figure. When 

slip is not detected the computer is given a default signal 0 which signifies the non- 

slip stage. When it is detected, a 1 is manually typed in through the serial port as a 

visual feedback signal overwriting the default input.  Again, since the visual system 
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network learning rate 

2 neuron hidden layer network 1.58 

6 neuron hidden layer network 1.01 

15 neuron hidden layer netowork 0.65 

Table 4.1: The optimal learning rate lor each network. 

is not at the stage where it can cooperate with the hand, the experimenter has input 

the signal when the visually obvious slip is detected. After enough cases of slip were 

introduced, all the sensory data was recorded and the network was trained separately 

from the hardware. Eventually I would like to train the network on line, but without 

having the real visual feedback, manual labor is overwhelming. To record one set of 

input vector to run one epoch, about 50 different slips are manually inputed. And 

to train the networks, at least 500 epochs are required. In the training session, the 

number of hidden layer neurons and the learning rate were varied to find the optimal 

back-propagated networks. The number of neurons in the first hidden layer was fixed 

to 6 to match the number of input nodes. The number of neurons in the second 

hidden layer is deviated to 2, 6 and 15 neurons. Setting the desired sum-squared 

network error, 

£(n) = ö£e.? (4.16) 
iec 

to 0.006, I have trained the networks with different learning rates. If the desired 

error was not reached within 500 epochs, the training was stopped. The results are 

graphed and shown in Figure 4-11, Figure 4-12 and Figure 4-13. Since the initial 

random weights give different sum-squared error initially, comparing the speed ol 

convergence between different networks is not relevant. Intuitively, all the networks 

converges faster when the learning rate is increased. However, as soon as the learning 

rate exceeds the fastest convergent point, the systems never converge and seem to get 

stuck in a local minima at E(n) = 19.00. The optimal learning rate for each network 

is shown in Table 4.1. Even if the system converges at the end, the error does not 

stably decrease when the learning rate is higher.  This makes the system unreliable 
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Sum-Squared Network Error for 500 Epochs Sum-Squared Network Error for 500 Epochs 

100 150 
Epoch 

Figure 4-11: Two neuron hidden layer training result: 
top left, rj = 0.1; 
top right, rj = 0.8; 
bottom left, r/ = 1.5; 
bottom right, rj = 2.0. 
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Sum-Squared Network Error for 500 Epochs 
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Figure 4-12: Six neuron hidden layer training result: 
top left, r/ = 0.1; 
top right, rj = 0.8; 
bottom left, rj = 1.01; 
bottom right, r/ = 3.0. 
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Sum-Squared Network Error for 500 Epochs Sum-Squared Network Error for 227 Epochs 

100 120 140 160 180 

Figure 4-13: Fifteen neuron hidden layer training result: 
top left, r\ = 0.1; 
top right, rj = 0.5; 
bottom left, rj = 0.6; 
bottom right, rj = 0.8. 
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since depending on the inputs, the system has a possibility of finding a local minima 

and never converging. Even though this problem may be solved when it is run on line 

with some noticable noise which can disturb away from local minima, it does make 

the system more reliable by picking a good middle ground learning rate. As far as the 

number of hidden neurons are concerned, the calculation time increases significantly 

as more neurons are added. Even though the network containing larger hidden layers 

can take higher learning rate stably, if each epoch takes longer to calculate, the 

advantage is diminished. For this specific experiment, six hidden neurons for both 

hidden layers and having 1.0 learning rate seems to be the most optimal solution, 

though this may change as the system is trained on line in the future. Average 

outputs of a trained network taken under many operations containing slips are shown 

in Table 4.2, where input difference is the most significant sensor reading difference 

Input Difference Slipped? Output 

5 yes 0.9863 
4 yes 0.9863 
3 yes 0.9867 
9 yes 0.9905 
1 yes 0.9903 
0 no 0.0007 
-1 no 0.0002 
_2 no 0.0003 
-3 no 0.0003 
-4 no 0.0003 
-5 no 0.0003 

Table 4.2: Trained slip detection network output with testing inputs. 

between two readings. The output is well categorized even for the inputs that are not 

used for training such as 1 to 4. 
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4.2.3     Grasping Action Network 

Theory of Reinforcement Learning 

Reinforcement learning is based on a common sense idea that if an action is fol- 

lowed by a satisfactory state of affairs, then the tendency to produce that action is 

strengthened[33]. This idea was initially studied in psychology by Pavlov in learning 

work with animals. In neural networks, the studies are focused on actor-critic learning 

algorithm or Q-learning, both based on the temporal difference method[33, 35, 37]. 

An actor-critic system has two subsystems, one is an evaluation network which esti- 

mates the long term utility for each state and the other is a policy network which learn 

to choose the optimal action in each state. A Q-learning system maintains estimates 

of utilities of all state-action pairs and utilizes them to select a suitable action. The 

object of Q-learning is to estimate a real-valued function, Q, of states and actions, 

where Q(x,a) is the expected discounted sum of future reward for performing action 

a in state x and performing optimally thereafter. This relationship can be expressed 

as: 

Q(xn, an) = E {rn + -)Max\Q{xn+x, y))} (4.17) 

where rn is an immediate reward at step n, 7 is a discount factor, 0 < 7 < 1, and y 

is the next state. The estimation of Q, Qest is updated at each time step, 

Qest(Xn,an)  ■=  Qest(xn, "n) + ßn{rn + 0Müx(Q est(xn+1, %))) - Qest(x„,an))       (4.18) 

where ßn is a gain sequence, and all the estimation is maintained within the function. 

A gain sequence has a characteristic such that 0 < ßn < 1, Y^=i ßn = oo and 

Y^=i ßn < °°- Q-learning has been proven to converge at all time[35]. 
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Figure 4-14: Grasping Action Network block diagram 

Application 

The Q-learning algorithm assumes that the system can observe an input vector at 

nth iteration, xn, action chosen at Stochastic Action Selector at nth eteration, an, 

reinforcement value, r„, and the next input vector, xn+1, at each time step. However, 

since grasping is a one way operation(meaning open —>■ close, not open <-+ close), xn+1 

cannot be seen at the end of the iteration, n. Moreover, xn is already analyzed and 

categorized using competitive learning networks. Implementing with a connectionist 

idea, internal self reinforcement system was built using two components as shown 

in Figure 4-14. The first system is a Reinforced Probability Net, RPN, which takes 

the classified information, H(x), from hardness recognition network and a set of 

actions, A = {aua2, ...,az | a(j) = a set of actuator inputs of jth action}. It outputs 

an action merit vector, M{A), that assigns a value to each action. The second system 

is Stochastic Action Selector that takes M{A) and selects an action and sends the 
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information to the actuators. According to the action given, the shear detection 

network gives an output which can be converted to an immidiate payoff value, r. 

RPN is reinforced using TD methods, back-propagating a reinforced correction vector, 

RC(n). The simplified algorithm is as follows: 

1. H(x) <— current hardness class; for each action a(j), M(a(j)) <— RPN(H(x), a(j)); 

2. a*- SAS(M(A)); 

3. Perform action a; 

4. Send new sensory information to hardness recognition network and shear de- 

tection network; (H(x),S(x)) «— new hardness class and shear value; 

5. r = -2S(x) + 1; 

6. RC = M(A) + (£r); where £ is a damping constant. 

7. Adjust the RPN by back-propagating RC; 

8. Go to 1; 

There are two ways of implementing RPN. Classified RPN is shown in Figure 4- 

15. There are only two layers in the network with an additional neuron selector at 

the output. This allows the M(A) to converge faster for each class, though when a 

new hardness category is added, it has to relearn by adding unattached neurons into 

the network and start from a scratch. The other implementation is Mutiple Layer 

RPN which uses more hidden layers and feed H[x) with the action vector as shown in 

Figure 4-16. For this system, only synaptic weight adjustment is made for the existing 

neurons. This method varies in the time of retraining depending on the newly given 

object. For this experiment, the classified RPN is chosen to use due to the calculation 

speed and limited object hardness categories. 
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H(x) 

Figure 4-15: Classified RPN(Back-propagated on the solid lines) 

hidden 1      hidden 2 hidden k 

H(x) 
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Figure 4-16: Multiple hidden layer RPN 
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Experimental Results 

Six set classified RPN has been constructed with six categories from the hardness 

recognition network. Since each set gives a similar training result, only one class, 

H(x) = 3 is shown in this section. The set of actions has been determined to have 

eight cases of grasping potential positions. The initial weights are set in a way that 

each action has equal probability of being chosen at the beginning. It is a timely 

operation since, as mentioned before, the hardware is not functional enough to operate 

autonomously, when the grasping action signal is received, external force needs to be 

applied to achieve the grasping position and the slip is detected and input by the 

experimenter. For the Classified RPN method, the number of epochs can be quite 

small to achieve an optimally trained network. There are two variable constants, 

learning rate and damping constant, to change to achieve different ways of training 

the network. The learning graphs with different constant values in a short period of 

training are plotted in Figure 4-17 and the longevity training results are shown in 

Figure 4-18. When £ is too small, the network never get trained as desired because 

the system is not reinforced strongly enough. Though as long as £ is large, rj does 

not need to be large to learn quickly and correctly. When both £ and rj are too large, 

the system falls into a local minimum and does not converge. The advantage of this 

system is that once the networks are trained within the desired square-sum errors, as 

long as the damping constant and learning rate are optimally small, the system can 

adapt to any new objects that are to be grasped. To simulate the trained network, 

the action chosen was output to a computer monitor through a serial port so that 

some external force can be applied to achieve the desired action. For a well trained 

network, 15 iterations were conducted and it chose one action that can achieve the 

stable grasp every time as shown in Table 4.3. If multiple actions can accomplish the 

grasp desired, the output actions are equally divided among them. 
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Reinforcement Learning Weight Change Over Time 
Reinforcement Learning Weight Change Over Time 

5 6 7 
number of epochs 

Figure 4-17:   Changes in synaptic weights over short period of time for different 
learning rates and damping constant: 
top left: £ = 0.1, T) = 5; 
top right: £ = 0.9, rj - 5; 
bottom left: £ = 5, ?/ = 0.1; 
bottom right: £ = 5, rj = 5. 
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Reinforcement Learning Weigh! Change Over Time Reinforcement Learning Weight Change Over Time 
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Figure 4-18: Training over a long period of time: 
left: £ = 0.3, ?/ = 0.3; 
right: £ = 1, 77 = 1; 

20 25 30 
number of epochs 

H(x) a(n) Successful Grasping/# of trials total 
1 2 15/15 
2 8 9/15 

2 6/15 
3 6 15/15 
4 1 7/15 

2 7/15 
5 5 15/15 
6 5 14/15 

Table 4.3: Stable grasp success rate. 
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Chapter 5 

Conclusions 

5.1     Review of Thesis 

For this thesis, a, self-contained anthropomorphic scaled non-task driven tool which 

learns its own cognitive and physical behavior is constructed. The physical challenge 

was minimizing size and weight of the hand which has enough strength and precision 

to manipulate objects. Commercially available actuators and sensors are chosen, and 

motor and sensor controllers are designed and constructed. The controller boards are 

mounted on the dorsum, controlling all the motors and sensors of the hand. When 

the whole system was integrated, the overall weight of the hand was less than 1.9 

pounds. The arm, which is under construction, is capable of exerting about three 

jDound torque at the tip of the hand, without the weight of hand, resulting in one 

pound maximum load torque. 

The cognitive challenge is more complex because the problem itself is not well- 

stated. With our existing technology and biological facts, very limited implementa- 

tion was made. Utilizing our knowledge of nervous system organization, low level 

operation is executed locally at an MC6811 controller, which simulates the spinal 

cord. It contains a feedback controller which stablizes and minimizes the error of 

finger positions, and a reflex system for the fingers. The higher level learning schema 
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is designed, trained and tested on MATLAB and later will be implemented on an 

MC68332 controller for autonomy. It learns to distinguish object hardness using a 

competitive learning strategy, learns to detect shear using backpropagation algorithm, 

and learned overall simple grasping using reinforcement learning. All the strategies 

used are defined with the inspiration of human neural system and human response 

to given stimuli, but the implementation of them is not necessarily a direct model. 

This system simulates the surface level learning strategy shown in infants, but may 

not coincide with human's actual learning process. 

5.2     The Future 

5.2.1     Physical Work 

By building a system, many improvements that can be made are realized. 

STRUCTURE: The whole structure of hand can be made even smaller. The pieces 

are made larger than absolutely necessary for building simplicity. When a part 

is smaller, the error ratio becomes higher for the same error caused in machining. 

The diameter of fingers can be cut in half if the pulleys can be machined to fit 

the need. Motors can be organized as shown in Figure 5-1 so that the size of 

the palm can be also minimized. For more compliancy, spring loaded joints for 

proximal joints could be considered to give another degree of freedom of an axis 

perpendicular to the existing rotation at a proximal joint. The weight can be 

minimized significantly if the number of screws are reduced by building more 

complicated parts instead of bolting two simple pieces together using screws. 

SENSORS: Tactile sensor technology needs to leap a big step. Sensors need to be 

aligned at the silicon level, giving a high resolution array of force sensors. The 

fundamental idea of wires and connectors needs to be improved or changed to 

adopt a tactile system that can be integrated in a human form. 
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palm 

NOW FUTURE 

Figure 5-1: A diagram of motor alignment improvement. 

COMPUTING: If the motor controller and sensor interface boards design does 

not require any change, it may be implemented on a chip containing all the 

capabilities needed. This should significantly reduce the size and weight of the 

system. Eventually this should be mounted in the spine. 

The hand will be soon interfaced with the arm, connecting to the whole body. 

With arm manipulation capability and the existance of visual and auditory feedback, 

a door will be opened for building a more complex system that triggers many new 

constraints and limitations. 

Biology has its own amazing system which allows organisms to live and function. 

It is the duty of scientists to attempt to decode the organic system for a deeper 

understanding of nature. 

5.2.2     Cognitive Work 

Neural networks have allowed scientists to take a big step in being adaptive and 

flexible to the environment which is rapidly changing and is full of noise. However, 

all the learning theories that are implementable today unfortunately contain many 

assumptions that may not be true in the real world. For example, they all assume a 
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perfect Markov decision world; the complete set of state information can be accessed 

by the agent any time. 

Human cognition is still a black box that neuroscientists, philosophers, computer 

scientists and many more are required to keep tackling and investigating. As a tiny 

step, the attempt to understand the infants manipulation learning by implementating 

a physical hand was described in this thesis. Babies may not use a learning mechanism 

close to what is described, but when the whole body is integrated, we may discover a 

phenomena that could not be obvious before. Studying infants learning system seems 

to be a suitable starting point since the development of cognition is initiated by the 

social interactions and learning that occurs during infancy. To get a closer look at 

cognition itself, a much simpler physical system with minimal cognitive assumptions 

may need to be build to tackle even lower level cognitive problems. 

Afterall, the project to understand human cognition has just started. 
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